Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular characterization of a FKBP-type immunophilin from higher plants.

Identifieur interne : 001A97 ( Main/Exploration ); précédent : 001A96; suivant : 001A98

Molecular characterization of a FKBP-type immunophilin from higher plants.

Auteurs : S. Luan [États-Unis] ; J. Kudla ; W. Gruissem ; S L Schreiber

Source :

RBID : pubmed:8692927

Descripteurs français

English descriptors

Abstract

Immunophilins are intracellular receptors for the immunosuppressants cyclosporin A, FK506, and rapamycin. In addition to their use in organ transplantation, these natural products have been used to investigate signaling pathways in yeast, plant, and mammalian cells. We have recently described the identification of an immunosuppressant-sensitive signaling pathway in and the purification of several immunophilins from Vicia faba plants. We now report the molecular characterization of a 15 kDa FK506- and rapamycin-binding protein from V. faba (VfFKBP15). The amino acid sequence deduced from the cDNA starts with a signal peptide of 22 hydrophobic amino acids. The core region of VfFKBP15 is most similar to yeast and mammalian FKBP13 localized in the endoplasmic reticulum (ER). In addition, VfFKBP15 has a carboxyl-terminal sequence that is ended with SSEL, a putative ER retention signal. These findings suggest that VfFKBP15 is a functional homolog of FKBP13 from other organisms. Interestingly, two distinct cDNAs corresponding to two isoforms of FKBP15 have been cloned from Arabidopsis and also identified from rice data base, suggesting that pFKBP15 (plant FKBP15) is encoded by a small gene family in plants. This adds to the diversity of plant FKBP members even with the same subcellular localization and is in contrast with the situation in mammalian and yeast systems in which only one FKBP13 gene has been found. Like the mammalian and yeast FKBP13, the recombinant VfFKBP15 protein has rotamase activity that is inhibited by both FK506 and rapamycin with a Ki value of 30 nM and 0.9 nM, respectively, illustrating that VfFKBP15 binds rapamycin in preference over FK506. The mRNA of VfFKBP15 is ubiquitously expressed in various plant tissues including leaves, stems, and roots, consistent with the ER localization of the protein. Levels of VfFKBP15 mRNA are elevated by heat shock, suggesting a possible role for this FKBP member under stress conditions.

DOI: 10.1073/pnas.93.14.6964
PubMed: 8692927
PubMed Central: PMC38917


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular characterization of a FKBP-type immunophilin from higher plants.</title>
<author>
<name sortKey="Luan, S" sort="Luan, S" uniqKey="Luan S" first="S" last="Luan">S. Luan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Biology, University of California, Berkeley, CA 94720, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, University of California, Berkeley, CA 94720</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kudla, J" sort="Kudla, J" uniqKey="Kudla J" first="J" last="Kudla">J. Kudla</name>
</author>
<author>
<name sortKey="Gruissem, W" sort="Gruissem, W" uniqKey="Gruissem W" first="W" last="Gruissem">W. Gruissem</name>
</author>
<author>
<name sortKey="Schreiber, S L" sort="Schreiber, S L" uniqKey="Schreiber S" first="S L" last="Schreiber">S L Schreiber</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1996">1996</date>
<idno type="RBID">pubmed:8692927</idno>
<idno type="pmid">8692927</idno>
<idno type="pmc">PMC38917</idno>
<idno type="doi">10.1073/pnas.93.14.6964</idno>
<idno type="wicri:Area/Main/Corpus">001A99</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A99</idno>
<idno type="wicri:Area/Main/Curation">001A99</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A99</idno>
<idno type="wicri:Area/Main/Exploration">001A99</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular characterization of a FKBP-type immunophilin from higher plants.</title>
<author>
<name sortKey="Luan, S" sort="Luan, S" uniqKey="Luan S" first="S" last="Luan">S. Luan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Biology, University of California, Berkeley, CA 94720, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, University of California, Berkeley, CA 94720</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kudla, J" sort="Kudla, J" uniqKey="Kudla J" first="J" last="Kudla">J. Kudla</name>
</author>
<author>
<name sortKey="Gruissem, W" sort="Gruissem, W" uniqKey="Gruissem W" first="W" last="Gruissem">W. Gruissem</name>
</author>
<author>
<name sortKey="Schreiber, S L" sort="Schreiber, S L" uniqKey="Schreiber S" first="S L" last="Schreiber">S L Schreiber</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="1996" type="published">1996</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Base Sequence (MeSH)</term>
<term>Carrier Proteins (biosynthesis)</term>
<term>Carrier Proteins (isolation & purification)</term>
<term>Carrier Proteins (metabolism)</term>
<term>DNA, Complementary (MeSH)</term>
<term>DNA-Binding Proteins (biosynthesis)</term>
<term>DNA-Binding Proteins (isolation & purification)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Endoplasmic Reticulum (metabolism)</term>
<term>Fabaceae (genetics)</term>
<term>Fabaceae (metabolism)</term>
<term>Gene Library (MeSH)</term>
<term>Heat-Shock Proteins (biosynthesis)</term>
<term>Heat-Shock Proteins (isolation & purification)</term>
<term>Heat-Shock Proteins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Immunosuppressive Agents (metabolism)</term>
<term>Intracellular Membranes (metabolism)</term>
<term>Isomerases (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Mammals (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Mitochondria (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oligonucleotide Probes (MeSH)</term>
<term>Plant Leaves (MeSH)</term>
<term>Plants, Medicinal (MeSH)</term>
<term>Polyenes (metabolism)</term>
<term>RNA, Messenger (biosynthesis)</term>
<term>Saccharomyces cerevisiae (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Sirolimus (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
<term>Tacrolimus (metabolism)</term>
<term>Tacrolimus Binding Proteins (MeSH)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (MeSH)</term>
<term>ARN messager (biosynthèse)</term>
<term>Animaux (MeSH)</term>
<term>Banque de gènes (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Fabaceae (génétique)</term>
<term>Fabaceae (métabolisme)</term>
<term>Feuilles de plante (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Immunosuppresseurs (métabolisme)</term>
<term>Isomerases (métabolisme)</term>
<term>Mammifères (MeSH)</term>
<term>Membranes intracellulaires (métabolisme)</term>
<term>Mitochondries (métabolisme)</term>
<term>Plantes médicinales (MeSH)</term>
<term>Polyènes (métabolisme)</term>
<term>Protéines de liaison au tacrolimus (MeSH)</term>
<term>Protéines de liaison à l'ADN (biosynthèse)</term>
<term>Protéines de liaison à l'ADN (isolement et purification)</term>
<term>Protéines de liaison à l'ADN (métabolisme)</term>
<term>Protéines de transport (biosynthèse)</term>
<term>Protéines de transport (isolement et purification)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Protéines du choc thermique (biosynthèse)</term>
<term>Protéines du choc thermique (isolement et purification)</term>
<term>Protéines du choc thermique (métabolisme)</term>
<term>Réticulum endoplasmique (métabolisme)</term>
<term>Saccharomyces cerevisiae (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Sirolimus (MeSH)</term>
<term>Sondes oligonucléotidiques (MeSH)</term>
<term>Souris (MeSH)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Tacrolimus (métabolisme)</term>
<term>Transcription génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Carrier Proteins</term>
<term>DNA-Binding Proteins</term>
<term>Heat-Shock Proteins</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Carrier Proteins</term>
<term>DNA-Binding Proteins</term>
<term>Heat-Shock Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carrier Proteins</term>
<term>DNA-Binding Proteins</term>
<term>Heat-Shock Proteins</term>
<term>Immunosuppressive Agents</term>
<term>Isomerases</term>
<term>Polyenes</term>
<term>Tacrolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>ARN messager</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines de transport</term>
<term>Protéines du choc thermique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fabaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Fabaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Protéines de liaison à l'ADN</term>
<term>Protéines de transport</term>
<term>Protéines du choc thermique</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endoplasmic Reticulum</term>
<term>Fabaceae</term>
<term>Intracellular Membranes</term>
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Fabaceae</term>
<term>Immunosuppresseurs</term>
<term>Isomerases</term>
<term>Membranes intracellulaires</term>
<term>Mitochondries</term>
<term>Polyènes</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines de transport</term>
<term>Protéines du choc thermique</term>
<term>Réticulum endoplasmique</term>
<term>Tacrolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>DNA, Complementary</term>
<term>Gene Library</term>
<term>Humans</term>
<term>Kinetics</term>
<term>Mammals</term>
<term>Mice</term>
<term>Molecular Sequence Data</term>
<term>Oligonucleotide Probes</term>
<term>Plant Leaves</term>
<term>Plants, Medicinal</term>
<term>Saccharomyces cerevisiae</term>
<term>Sequence Homology, Amino Acid</term>
<term>Sirolimus</term>
<term>Substrate Specificity</term>
<term>Tacrolimus Binding Proteins</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN complémentaire</term>
<term>Animaux</term>
<term>Banque de gènes</term>
<term>Cinétique</term>
<term>Données de séquences moléculaires</term>
<term>Feuilles de plante</term>
<term>Humains</term>
<term>Mammifères</term>
<term>Plantes médicinales</term>
<term>Protéines de liaison au tacrolimus</term>
<term>Saccharomyces cerevisiae</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Sirolimus</term>
<term>Sondes oligonucléotidiques</term>
<term>Souris</term>
<term>Spécificité du substrat</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Immunophilins are intracellular receptors for the immunosuppressants cyclosporin A, FK506, and rapamycin. In addition to their use in organ transplantation, these natural products have been used to investigate signaling pathways in yeast, plant, and mammalian cells. We have recently described the identification of an immunosuppressant-sensitive signaling pathway in and the purification of several immunophilins from Vicia faba plants. We now report the molecular characterization of a 15 kDa FK506- and rapamycin-binding protein from V. faba (VfFKBP15). The amino acid sequence deduced from the cDNA starts with a signal peptide of 22 hydrophobic amino acids. The core region of VfFKBP15 is most similar to yeast and mammalian FKBP13 localized in the endoplasmic reticulum (ER). In addition, VfFKBP15 has a carboxyl-terminal sequence that is ended with SSEL, a putative ER retention signal. These findings suggest that VfFKBP15 is a functional homolog of FKBP13 from other organisms. Interestingly, two distinct cDNAs corresponding to two isoforms of FKBP15 have been cloned from Arabidopsis and also identified from rice data base, suggesting that pFKBP15 (plant FKBP15) is encoded by a small gene family in plants. This adds to the diversity of plant FKBP members even with the same subcellular localization and is in contrast with the situation in mammalian and yeast systems in which only one FKBP13 gene has been found. Like the mammalian and yeast FKBP13, the recombinant VfFKBP15 protein has rotamase activity that is inhibited by both FK506 and rapamycin with a Ki value of 30 nM and 0.9 nM, respectively, illustrating that VfFKBP15 binds rapamycin in preference over FK506. The mRNA of VfFKBP15 is ubiquitously expressed in various plant tissues including leaves, stems, and roots, consistent with the ER localization of the protein. Levels of VfFKBP15 mRNA are elevated by heat shock, suggesting a possible role for this FKBP member under stress conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">8692927</PMID>
<DateCompleted>
<Year>1996</Year>
<Month>08</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>93</Volume>
<Issue>14</Issue>
<PubDate>
<Year>1996</Year>
<Month>Jul</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular characterization of a FKBP-type immunophilin from higher plants.</ArticleTitle>
<Pagination>
<MedlinePgn>6964-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Immunophilins are intracellular receptors for the immunosuppressants cyclosporin A, FK506, and rapamycin. In addition to their use in organ transplantation, these natural products have been used to investigate signaling pathways in yeast, plant, and mammalian cells. We have recently described the identification of an immunosuppressant-sensitive signaling pathway in and the purification of several immunophilins from Vicia faba plants. We now report the molecular characterization of a 15 kDa FK506- and rapamycin-binding protein from V. faba (VfFKBP15). The amino acid sequence deduced from the cDNA starts with a signal peptide of 22 hydrophobic amino acids. The core region of VfFKBP15 is most similar to yeast and mammalian FKBP13 localized in the endoplasmic reticulum (ER). In addition, VfFKBP15 has a carboxyl-terminal sequence that is ended with SSEL, a putative ER retention signal. These findings suggest that VfFKBP15 is a functional homolog of FKBP13 from other organisms. Interestingly, two distinct cDNAs corresponding to two isoforms of FKBP15 have been cloned from Arabidopsis and also identified from rice data base, suggesting that pFKBP15 (plant FKBP15) is encoded by a small gene family in plants. This adds to the diversity of plant FKBP members even with the same subcellular localization and is in contrast with the situation in mammalian and yeast systems in which only one FKBP13 gene has been found. Like the mammalian and yeast FKBP13, the recombinant VfFKBP15 protein has rotamase activity that is inhibited by both FK506 and rapamycin with a Ki value of 30 nM and 0.9 nM, respectively, illustrating that VfFKBP15 binds rapamycin in preference over FK506. The mRNA of VfFKBP15 is ubiquitously expressed in various plant tissues including leaves, stems, and roots, consistent with the ER localization of the protein. Levels of VfFKBP15 mRNA are elevated by heat shock, suggesting a possible role for this FKBP member under stress conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Luan</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, University of California, Berkeley, CA 94720, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kudla</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gruissem</LastName>
<ForeName>W</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schreiber</LastName>
<ForeName>S L</ForeName>
<Initials>SL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>U52045</AccessionNumber>
<AccessionNumber>U52046</AccessionNumber>
<AccessionNumber>U52047</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM38627</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM52826</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006360">Heat-Shock Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007166">Immunosuppressive Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015345">Oligonucleotide Probes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011090">Polyenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.-</RegistryNumber>
<NameOfSubstance UI="D007535">Isomerases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.2.1.-</RegistryNumber>
<NameOfSubstance UI="D022021">Tacrolimus Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>WM0HAQ4WNM</RegistryNumber>
<NameOfSubstance UI="D016559">Tacrolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007887" MajorTopicYN="N">Fabaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015723" MajorTopicYN="N">Gene Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006360" MajorTopicYN="N">Heat-Shock Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007166" MajorTopicYN="N">Immunosuppressive Agents</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007425" MajorTopicYN="N">Intracellular Membranes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007535" MajorTopicYN="N">Isomerases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008322" MajorTopicYN="N">Mammals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015345" MajorTopicYN="N">Oligonucleotide Probes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010946" MajorTopicYN="Y">Plants, Medicinal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011090" MajorTopicYN="N">Polyenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016559" MajorTopicYN="N">Tacrolimus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022021" MajorTopicYN="N">Tacrolimus Binding Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1996</Year>
<Month>7</Month>
<Day>9</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1996</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1996</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">8692927</ArticleId>
<ArticleId IdType="pmc">PMC38917</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.93.14.6964</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Gene. 1988 Jul 15;67(1):31-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3047011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Aug;13(8):4760-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7687744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1989 Apr;5(2):151-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2720464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Aug 16;346(6285):671-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1696686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Jan 18;251(4991):283-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1702904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6677-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1713687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Aug 23;66(4):807-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jan 2;355(6355):33-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1731198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Feb 15;267(5):2986-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1371110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Mar 5;267(7):4281-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1537818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Mar 3;31(8):2427-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1371698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Apr 28;31(16):3896-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1373650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1992 Apr 30;184(2):733-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1374240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 May 15;267(14):9474-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1374404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Jun 5;267(16):10942-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1375932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 May 29;256(5061):1315-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1376003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jun 25;357(6380):692-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1377361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jun 25;357(6380):695-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1377362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Aug 7;70(3):365-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1379518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7471-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1380159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1993 Jul 11;21(14):3328</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8341613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7769-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7689229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Oct 25;268(30):22825-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8226793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1993 Dec 8;134(2):271-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7505249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Jul;102(3):843-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8278536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):984-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7508125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 May 20;77(4):513-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7514503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Jun 30;369(6483):756-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8008069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Jul 15;78(1):35-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7518356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Dec 23;269(51):32027-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7528205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Dec;106(4):1241-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7846151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Jul 14;82(1):121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7606777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Nov 3;83(3):463-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8521476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 17;270(46):27531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7499212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10974-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1279700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Feb 12;72(3):427-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8431946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2202-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7681590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 May 7;73(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7685904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Feb 2;337(6206):476-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2492638</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Gruissem, W" sort="Gruissem, W" uniqKey="Gruissem W" first="W" last="Gruissem">W. Gruissem</name>
<name sortKey="Kudla, J" sort="Kudla, J" uniqKey="Kudla J" first="J" last="Kudla">J. Kudla</name>
<name sortKey="Schreiber, S L" sort="Schreiber, S L" uniqKey="Schreiber S" first="S L" last="Schreiber">S L Schreiber</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Luan, S" sort="Luan, S" uniqKey="Luan S" first="S" last="Luan">S. Luan</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A97 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A97 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:8692927
   |texte=   Molecular characterization of a FKBP-type immunophilin from higher plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:8692927" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020